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MULTIFRACTALS IN IMAGE PROCESSING AND PROCESS IMAGING

Lee De Cola
U.S. Geological Survey
521 National Center
Reston, Virginia 22092

ABSTRACT

Image data may be analyzed for a range of scale levels by generalizing high resolution meas-
urements into an image pyramid whose statistical description is used to estimate a fractal
dimension D, for each value ¢ of the image histogram. This multifractal analysis is demon-
strated for a satellite image of Reston, Virginia, which is compared to data simulated by
Gaussian and random walk processes. The behavior of the multifractal dimension is used to
characterize simulated and empirical data and to detect low- and high-dimension features in
the image.

INTRODUCTION
Casual observation, as well as a great deal of empirical research, reveals that
»  spatial phenomena are complicated and irregular,
»  spatial patterns tend to be self-similar among scales, and

»  spatial data cannot be completely characterized using Euclidean notions of points,
lines, planes, and volumes.

Fractal sets, which are irregular, self-similar, and non-Euclidean, can be used to analyze data
for many kinds of spatial phenomena. This paper presents results from experiments using
fractal concepts in the analysis of images. Four kinds of sets—topological, ideal, stochastic,
and empirical—can in part be characterized by multiple fractal dimensions D. These meas-
ures are applied to empirical data, and the results are then compared to data simulated to
mimic spectral characteristics of the real images. This comparison suggests a hierarchy of
spatial processes that give empirical data their richness and complexity. Although the

Any use of trade, product, or firm names in this publication is for descriptive purposes only
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objective of extracting features from images is demonstrated, the exercise also provides a
broader understanding of spatial process.

Let us make a distinction among these four kinds of sets, which are not always self-similar
across scales or space, and not all of which correspond to a single (monofractal) dimension
(De Cola, 1991):

I Fractal set Irregular Seif—similar Fractal dimension
Topological No Yes Single (integer)
Ideal Yes Yes Single
Stochastic Yes Yes Multiple
Empirical Yes - No Multiple

Topological spaces establish the Euclidean framework, usually R?, within which data are
gathered, and may be used to define locations of observations, usually bounded by R' lines in
R? Such topological fractal sets are self-similar and have unique integral nonnegative
dimensions D € N.

Ideal fractal sets illustrate the fundamental ideas of fractal geometry, namely the irregular
self-similarity of single-dimension (monofractal) sets. The infinite Koch "snowflake"
construction is an example of an ideal fractal set with dimension D = logd/log3 ~ 1.26
identically at all scales, uniformly at all locations, and consistently at all times. Much like
their Euclidean counterparts the point, line, or plane, ideal fractals are perfect and unchanging.

Stochastic fractal sets require that we drop the monofractality assumption and measure many
dimensions in order to represent the varying form of a phenomenon as a function of local
variables across space. These sets, which have a self-similar structure compounded with a
random component, are more complex and are particularly useful in the simulation of realistic
data. But unlike ideal fractal sets, stochastic data are multifractals whose dimensions change
with intensity, location, time, and even across scales. Figure 1, for example, is a rendering of
a cellular random walk in two dimensions, where the vertical axis is the number of times a
given cell is visited (Kaye, 1989). This simple cellular model generates an irregular self-
similar pattern—small pieces look like the whole—yet the pattern can only be characterized
as having more than a single (monofractal) dimension (Barnsley, 1988; Falconer, 1990).

Finally, empirical fractal data, which represent a decidedly nonfractal world, require that we
abandon self-similarity except within a range of scales. Because real spatial phenomena are
the products of scale-bound processes, their descriptions vary depending on how, where, and
when they are measured. Far from being a liubility, this situation means that a measurement
such as fractal dimension is a function D( ) of local variables. Multifractal measurement can
be used as a description of how spatial patterns, as well as hypothetical underlying processes,
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vary in irregularity at different intensities from place to place and time to time and even
among scales. This paper describes how the multifractal model can be used to explore spatial
structure and to make inferences about processes in the real world.
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Figure 1.—Three-dimensional rendering of an orthogonal, unit-step, random walk in two
dimensions.

The world is therefore not "fractal” in the ideal sense, for the processes underlying real
phenomena are too complex to be characterized by any single model (Nicolis and Prigogine,
1989). But empirical data are increasingly amenable to models embodying the fractal
paradigm of self-similar irregularity represented over a wide range of scales by nonintegral
dimension. It should also be recognized that fractal analysis is just one approach to the
measurement of spatial variation; two other multiscale approaches are Fourier and variogram
analysis (Roy, 1986; Burrough, 1989). Although there is not enough space here to develop
this argument, we can demonstrate that the fractal model is quite robust, parsimonious, and
therefore at least as powerful a characterization of spatial data as these alternative techniques.

MULTISCALE ANALYSIS

Before we turn to the application of these ideas to simulated and empirical data, we must
establish an algorithmic foundation for the multiscale analysis of spatial form. This foun-
dation is particularly valuable because several approaches to the measurement of fractal
dimension exist. We begin with topological specifications that provide data about a phe-
nomenon within some maximum spatial extent and for a smallest resolution element. Let

L > 0 be an integer with n = 2" and let X, be an nxn array (raster) of integers representing the
value of some variable x,, One way to generalize this 0-level array is by sampling every



other cell (pixel) in every other row, yielding an (n/2)x(n/2) array (Justice et al., 1989). The
technique used here, however, is to take the mean value of each 2x2 subarray, which gener-
alization may be repeated to yield a stack of L+1 layers X,, £ =0, . . ., L, as shown in
Figure 2, for L = 4. Each layer in the stack is a generalization of the layer below (Uhr,

1987).
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Figure 2.—An L = 4 data pyramid in which each layer is an aggregation of the one below.

Three things should be noted. First, it is possible to use subarrays other than the 2x2 chosen,
but this is a natural choice that also allows rapid bit arithmetic. Second, while the size of the
original ¢ = 0 layer is (2")?, the size of the complete image pyramid is only 4/3(2%)* Third,

although the size of each layer is one-fourth that of the

one below it, the amount of infor-

mation (as measured, for example, by some qualitative assessment of image "clarity")

certainly declines more slowly than this.

The fractal analysis of empirical data is based on the examination of statistics computed at
each level. Atlevel € = 0 let a subset of X, be X, = {xy: X, 2 t}, where ¢ is a threshold value
of the array (threshold brightness in the case of an image) and let e,, be the length of the
boundary of X,,, i.e., a count of the cell edges separating X, from its complement X;\X,,

(Culling, 1989). It is possible to generalize this measurn
which yields e,, the cell boundary of the generalized sef
of the scaling relationship between a region’s boundary
which, taking logs yields

log,(ey) = logy(a) — bl + e,

ement to the set X, = {x; x, 2t}
t X, Fractal dimension is a meagure
and its scale level & e, = a,(2") *

(D

where e, is an ordinary least squares error term. Becau
3-dimensional space [R? x I] of location X value, D, =

e the data X exist in the topological
— b, (Falconer, 1990, p. 42). The

regression also yields an estimate of g,, a measure of size, which will not be discussed here
(De Cola, 1989a and 1989b; see Whalley and Orford, 1989, for other approaches).

This multiscale analysis provides not merely a single

nofractal D but a multifractal func-

tion D, (Lovejoy and Schertzer, 1988) that varies with the intensity of a phenomenon (in this
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